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II'iushin’s postulatet

W=J. O'jié,'j dt20 (1)
P

was recently exploited in a paper[1] by Y. F. Defalias to derive restrictions on the elasto-plastic
coupling in the thermodynamic theory of rate-independent elasto—plastic materials. The paper
contains a clear introduction giving a sharp insight into the problem there considered. This, of
course, facilitates the criticism of the new results presented in [1] and I must, therefore,
apologize should my comments which follow be not expressive of the help which that introduction
gave me.

The general thermodynamic theory is formulated in [1] in terms of an undefined set of
internal plastic variables gy ; the main results, however, are derived by particularizing this set in
the form

{an}={Eks qu}. 2

Here Ef, is the plastic strain tensor defined by
Exi = Exi + Ef4, 3

where Ek; and Eg; are two Lagrangian strain tensors representing total deformation and elastic
deformation, respectively. By introducing a free energy function of the form

¥ = §(Exy, 0, E%1, qu), )

and a yield surface of the kind

F(Eki, 0, EkL, q:) =0 (5)

(strain space description), Defalias deduced from inequality (1) and from the second principle
of thermodynamics the central relation of his paper

aqiN (W — $r)r =0, ©)

To obtain this result, he considered a closed cycle of deformation in which the material is
brought from a point T on the yield surface to a point P in the strain space outside of the yield
surface and at infinitesimal distance from it. If the trivial case of yield surface of infinitesimal
dimensions is excluded, the deformation increment which brings the material from a point M
within the yield surface to the point T is, in general, finite with respect to the plastic deformation

tIn this discussion the notation of [1] will be consistently followed. The reader is referred to (1] for a definition of the
quantities introduced here.
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increment from T to P. This implies that to derive relation (6) a theory valid in the range of finite
deformations must be considered. Indeed, though not explicitly made, the allowance of finite
deformations appears to be obvious in paper [1], which, otherwise, would lose much of its
relevance. However, it is well known (see, e.g. [2, p. 22] and the references there quoted) that when
a plastic strain measure such as that defined by (3) is adopted, then the plastic strain tensor E§; is
influenced by the elastic strain tensor E%;, even if no plastic flow occurs (as, for instance, during
unloading processes). It turns out that in the strain space description of plasticity adopted in [1} it is
not true that E%; = 0 for unloading processes or for neutral processes and, therefore the condition

oF oF ;
Fy EKL+300 0 (7N

Eg; =0 for L=
introduced in [1] is not valid.t Since, moreover, it is known that the yield surface is unaffected
by deformation processes which occur within it, and since during such processes the tensor
EE; can vary, it follows that the explicit dependence on Ef; must be dropped from (5). It will
be shown in a moment that the second principle of thermodynamics requires that the explicit
dependence on Ef; must be dropped also from (4) when ¢ is relevant to points inside of the
yield surface. This implies that in relation (6) the derivative of s with respect to Ef; must
vanish, which, in turn, makes much of the results contained in Section 5 of [1] insignificant.

The second principle of thermodynamics postulated in [1] can be expressed by

— 4§+ Sk Ex =0 (8)
when isothermal processes are considered. Any closed isothermal deformation cycle which
occurs on the yield surface is a closed thermodynamic cycle because at the end of the cycle the

material recovers the same state it possesses at the beginning of the cycle: no plastic flow
occurring in the material during such a cycle. For this cycle the relation

f SKLEKL dt=0 9
holds true. Indeed, by integrating (8) along the cycle we get
§ SiExe dt =0, (10)

because ¢ assumes the same values at the beginning and at the end of the cycle and, hence,
$4 dt = 0. The inequality sign in (10) must be excluded since, otherwise, by reverting the cycle
we could arrive at a contradiction with (8). Hence equation (9) follows. From (9) and from
relation (8), of [1] it follows that

a
9€6E"’ Fy dt =0, (1

Since §4 dt =0, it can be deduced from (11) and (4) that

f.ﬁdt:?g(ag‘z E,"(L+;;’ q,,) dt =0, (12)

In this relation, however, ¢, =0 because no plastic flow occurs in this cycle. It follows,

therefore, that
3 A9y f" 3y
éaElp{ Eg dt = L aEf(LE o dt+ 3EL, E%; dt=0 (13)

+For the same reason the analysis by P. M. Naghdi and J. A. Trapp in Section 3 of Ref. 17 of [1] does not appear to be
correct, in general.
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for every pair of points A and A’ of the considered cycle. From (13) and from the fact that
—(0YEL)E& =0 (see eqn (9) of [1]) it follows that
2

35, Bh=0 (14)

for every isothermal deformation process which occurs on the yield surface. By repeating the
above analysis for a deformation cycle occurring inside of the yield surface, we get that
oy

EEF(L:O’ (15)

which clearly implies that 3!/3M/3Eh=0 for every point M within the yield surface. As a
consequence of this, relation (25) of [1] reduces to

a a -
EE'I/M"" anl/’TrNZO (16)

(note the difference in capital and small n). In view of (15) and in view of the fact that eqn (26)
of [1] is not valid in the range of finite deformations, much of the analysis in Section 5 of [1]
fails to be correct. Observe, moreover, that eqn (12) of [1] seems likely to be wrong, because, as
it stands, it would imply changes in the plastic internal variables for processes in the elastic
range (since, in general, E&; # 0 for these processes). However, no derivation of this equation
is given in [1].

Finally, it may be useful to remark that eqn (14), which has been derived here, may be used
to relate the yield surface to the free energy function. Since (14) is valid for isothermal
processes belonging to the yield surface, the tensor Ef; which appears in it is tangent to this
surface. Equation (14) states, therefore, that the tensor a.l}/aEﬁL is normal to the yield surface,
when 6 = const. Since the tensor dF]dEk; is normal to the yield surface for 8 = const, it follows
that

o oF
—=p /\ T 17
dEkL ~ 9Eke (17
where A is a scalar. When Eg; is the only internal plastic variable, then from (9) of {1] we get

__
dEkL

EﬂLZO (18)

for increments E§; df of plastic deformation which lead the material outside of the yield
surface. Since dFJ9Ex; points out of the yield surface, for the above increments of plastic
deformation the relation

oF
dEkL

Eg =0 (19)

holds. From (19), (17) and (18) it follows, therefore, that at the yield surface the equation

W Y oF
0Bk " 3Ex 20)
is valid, k being a scalar.
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